Regularity of infinite dimensional heat dynamics of unbounded lattice spins with non-constant diffusion coefficients
Завантаження...
Дата
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут прикладної математики і механіки НАН України
Анотація
Below we demonstrate how the C^∞-regular properties of heat dynamics with non-unit nonlinear diffusion coefficient can be studied. We consider an infinite dimensional model, describing evolution of unbounded lattice spins R^Z^d. As a main step we provide a construction of corresponding variational processes in ℓp(c) spaces with growing weights ck ~ e^a|k|, k belongs Z^d.
Developing the approach of nonlinear estimates on variations, we find sufficient conditions on the nonlinear coefficients of differential equation that lead to C^∞-regularity of solutions with respect to the initial data and C^∞-regularity of corresponding heat semigroup.
Опис
Теми
Цитування
Regularity of infinite dimensional heat dynamics of unbounded lattice spins with non-constant diffusion coefficients / A.Val. Antoniouk, A.Vict. Antoniouk // Нелинейные граничные задачи. — 2007. — Т. 17. — С. 101-129. — Бібліогр.: 11 назв. — англ.