The Truncated Fourier Operator. General Results
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Анотація
Let F be the one dimensional Fourier-Plancherel operator and E be a subset of the real axis. The truncated Fourier operator is the operator FE of the form FE = PEFPE, where (PEx)(t) = 1IE(t)x(t), and 1IE(t) is the indicator function of the set E. In the presented work, the basic properties of the operator FE according to the set E are discussed.
Пусть F - одномерный оператор Фурье-Планшереля, а E - подмножество действительной оси. Усеченным оператором Фурье называется оператор FE вида FE = PEFPE, где (PEx)(t) = 1IE(t)x(t), а 1IE(t) - индикатор множества E. Обсуждаются основные свойства оператора FE, соответствующего множеству E.
Пусть F - одномерный оператор Фурье-Планшереля, а E - подмножество действительной оси. Усеченным оператором Фурье называется оператор FE вида FE = PEFPE, где (PEx)(t) = 1IE(t)x(t), а 1IE(t) - индикатор множества E. Обсуждаются основные свойства оператора FE, соответствующего множеству E.
Опис
Теми
Цитування
The Truncated Fourier Operator. General Results / V. Katsnelson, R. Machluf // Журнал математической физики, анализа, геометрии. — 2012. — Т. 8, № 2. — С. 158-176. — Бібліогр.: 8 назв. — англ.