Rate of Decay of the Bernstein Numbers

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України

Анотація

We show that if a Banach space X contains uniformly complemented l₂ⁿ 's then there exists a universal constant b = b(X) > 0 such that for each Banach space Y, and any sequence dn ↓ 0 there is a bounded linear operator T : X → Y with the Bernstein numbers bn(T) of T satisfying b⁻¹dn ≤ bn(T) ≤ bdn for all n.
Показано, что для B-выпуклого сепарабельного пространства X, произвольного банахова пространства Y и любой последовательности dn ↓ 0 существует такой ограниченный линейный оператор T : X → Y и b > 0, что для всех чисел Бернштейна bn(T) оператора T имеем для любого n b⁻¹dn ≤ bn(T) ≤ bdn.

Опис

Теми

Цитування

Rate of Decay of the Bernstein Numbers / A. Plichko // Журнал математической физики, анализа, геометрии. — 2013. — Т. 9, № 1. — С. 59-72. — Бібліогр.: 26 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced