Дробно-дифференциальные математические модели динамики неравновесных геомиграционных процессов и задачи с нелокальными граничными условиями
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут кібернетики ім. В.М. Глушкова НАН України
Анотація
Приведены аналитические решения краевых задач с нелокальными граничными условиями для двух дробно-дифференциальных математических моделей динамики неравновесного во времени геомиграционного процесса. Рассмотрены модели, базирующиеся на уравнениях с производными дробного порядка Капуто и Хильфера.
Наведено аналітичні розв’язки крайових задач з нелокальними граничними умовами для двох дробово-диференціальних математичних моделей динаміки нерівноважного у часі геоміграційного процесу. Розглянуто моделі, що базуються на рівняннях з похідними дробового порядку Капуто і Хільфера.
The analytical solutions of boundary-value problems with nonlocal boundary conditions are presented for two fractional differential mathematical models of the dynamics of a geomigration process non-equilibrium in time. The models based on the equations with Caputo and Hilfer’s derivatives of fractional order is considered.
Наведено аналітичні розв’язки крайових задач з нелокальними граничними умовами для двох дробово-диференціальних математичних моделей динаміки нерівноважного у часі геоміграційного процесу. Розглянуто моделі, що базуються на рівняннях з похідними дробового порядку Капуто і Хільфера.
The analytical solutions of boundary-value problems with nonlocal boundary conditions are presented for two fractional differential mathematical models of the dynamics of a geomigration process non-equilibrium in time. The models based on the equations with Caputo and Hilfer’s derivatives of fractional order is considered.
Опис
Теми
Системный анализ
Цитування
Дробно-дифференциальные математические модели динамики неравновесных геомиграционных процессов и задачи с нелокальными граничными условиями / В.М. Булавацкий // Кибернетика и системный анализ. — 2014. — Т. 50, № 1. — С. 93-101. — Бібліогр.: 28 назв. — рос.