Asymmetric Hubbard model within generating functional approach in dynamical mean field theory
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут фізики конденсованих систем НАН України
Анотація
In the paper a new analytic approach to the solution of the effective single-site problem in the dynamical mean
field theory is developed. The approach is based on the method of the Kadanoff-Baym generating functional in
the form developed by Izyumov et al. It makes it possible to obtain a closed equation in functional derivatives
for the irreducible part of the single-site particle Green’s function; the solution is constructed iteratively. As
an application of the proposed approach the asymmetric Hubbard model (AHM) is considered. The inverse
irreducible part Ξ⁻¹σ of the single-site Green’s function is constructed in the linear approximation with respect
to the coherent potential Jσ. Basing on the obtained result, the Green’s function of itinerant particles in the
Falicov-Kimball limit of AHM is considered, and the decoupling schemes in the equations of motion approach
(GH3 approximation, decoupling by Jeschke and Kotliar) are analysed.
В роботi розвивається новий аналiтичний пiдхiд для розв’язання ефективної одновузлової задачi в методi динамiчного середнього поля. Пiдхiд ґрунтується на методi твiрного функцiоналу Каданова-Бейма у формi, розробленiй в роботах Iзюмова та iн. Вiн дає можливiсть отримати замкнене рiвняння у функцiональних похiдних для незвiдної частини одновузлової функцiї Грiна частинок; розв’язки будуються iтеративним способом. В ролi застосування запропонованої схеми взято асиметричну модель Хаббарда (АМХ). Побудовано обернену незвiдну частину Ξ⁻¹σ одновузлової функцiї Грiна в лiнiйному наближеннi за когерентним потенцiалом Jσ. Виходячи з отриманого результату, розглянено функцiю Грiна рухомих частинок у границi Фалiкова-Кiмбала АМХ, проаналiзовано схеми розщеплень у рiвняннях руху для одновузлової функцiї Грiна (наближення GH3, розщеплення ЄшкеКотляра).
В роботi розвивається новий аналiтичний пiдхiд для розв’язання ефективної одновузлової задачi в методi динамiчного середнього поля. Пiдхiд ґрунтується на методi твiрного функцiоналу Каданова-Бейма у формi, розробленiй в роботах Iзюмова та iн. Вiн дає можливiсть отримати замкнене рiвняння у функцiональних похiдних для незвiдної частини одновузлової функцiї Грiна частинок; розв’язки будуються iтеративним способом. В ролi застосування запропонованої схеми взято асиметричну модель Хаббарда (АМХ). Побудовано обернену незвiдну частину Ξ⁻¹σ одновузлової функцiї Грiна в лiнiйному наближеннi за когерентним потенцiалом Jσ. Виходячи з отриманого результату, розглянено функцiю Грiна рухомих частинок у границi Фалiкова-Кiмбала АМХ, проаналiзовано схеми розщеплень у рiвняннях руху для одновузлової функцiї Грiна (наближення GH3, розщеплення ЄшкеКотляра).
Опис
Теми
Цитування
Asymmetric Hubbard model within generating functional approach in dynamical mean field theory / I.V. Stasyuk, O.B. Hera // Condensed Matter Physics. — 2006. — Т. 9, № 3(47). — С. 587–602. — Бібліогр.: 40 назв. — англ.