К теории отображений, квазиконформных в среднем, на римановых многообразиях

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

В данной статье изучаются отображения, квазиконформные в среднем, на римановых многообразиях с интегральным условием типа ∫Ф(Q(х)) dv(x) < ∞. Найденные интегральные условия на функцию Ф являются не только достаточными, но и необходимыми для непрерывного продолжения f на границу.
У даній статті вивчаються відображення, квазіконформні у середньому, на ріманових многовидах з наступною інтегральною умовою ∫Ф(Q(х)) dv(x) < ∞. Знайдені інтегральні умови на функцію Ф є не тільки достатніми, а також необхідними для неперервного продовження / на межу.
In this article quasiconformal mappings in the mean on Riemannian manifolds with integral conditions of the type ∫Ф(Q(х)) dv(x) < ∞ are studied. The found integral conditions on the function Ф are not only sufficient but also necessary for continuous extension f to the boundary.

Опис

Теми

Цитування

К теории отображений, квазиконформных в среднем, на римановых многообразиях / Е.С. Афанасьева // Труды Института прикладной математики и механики НАН Украины. — Донецьк: ІПММ НАН України, 2010. — Т. 21. — С. 3-10. — Бібліогр.: 14 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced