Улучшенная верхняя граница для относительного расстояния между булевой функцией и множеством k-мерных функций
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут кібернетики ім. В.М. Глушкова НАН України
Анотація
Доказана теорема, улучшающая ранее известную верхнюю границу для относительного расстояния между булевой функцией от n пременных и множеством k-мерных функций, k < n. Доказательство базируется на применении неравенства Бонами Бекнера.
Доведено теорему, яка покращує раніше відому верхню межу для відносної відстані між булевою функцією n змінних та множиною k-вимірних функцій, k < n . Доведення базується на використанні нерівності Бонамі–Бекнера.
A theorem that improves a previously known upper bound for the relative distance between a Boolean function of n variables and the set of k-dimensional functions, k < n, is proved. The proof is based on the Bonami–Beckner inequality.
Доведено теорему, яка покращує раніше відому верхню межу для відносної відстані між булевою функцією n змінних та множиною k-вимірних функцій, k < n . Доведення базується на використанні нерівності Бонамі–Бекнера.
A theorem that improves a previously known upper bound for the relative distance between a Boolean function of n variables and the set of k-dimensional functions, k < n, is proved. The proof is based on the Bonami–Beckner inequality.
Опис
Теми
Кибернетика
Цитування
Улучшенная верхняя граница для относительного расстояния между булевой функцией и множеством k-мерных функций / А.Н. Алексейчук // Кибернетика и системный анализ. — 2015. — Т. 51, № 5. — С. 26-30. — Бібліогр.: 10 назв. — рос.