Про рівняння Маккіна–Власова з нескінченною масою

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Видавничий дім "Академперіодика" НАН України

Анотація

Розглянуто нескінченні системи стохастичних диференціальних рівнянь, що описують рух взаємодіючих частинок у випадковому середовищі. Доведено теореми існування та єдиності розв'язків. Також доведено граничну теорему для відповідних мірозначних процесів у випадку, коли маса кожної частинки прямує до нуля, а густота частинок зростає до нескінченності.
Рассмотрены бесконечные системы стохастических дифференциальных уравнений, описывающие движение взаимодействующих частиц в случайной среде. Доказаны теоремы существования и единственности решений. Также доказана предельная теорема для соответствующих мерозначных процессов в случае, когда масса каждой частицы стремится к нулю, а плотность частиц возрастает к бесконечности.
We consider infinite systems of stochastic differential equations that describe the motion of interacting particles in a random environment. Theorems on existence and uniqueness of the solution are proved. We also obtain a limit theorem for corresponding measure-valued processes in the case where the mass of each particle tends to zero, and the density of particles grows to infinity.

Опис

Теми

Математика

Цитування

Про рівняння Маккіна–Власова з нескінченною масою / М.В. Танцюра // Доповіді Національної академії наук України. — 2016. — № 8. — С. 19-25. — Бібліогр.: 7 назв. — укр.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced