Побудова точних розв'язків нелінійних рівнянь гіперболічного типу

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Видавничий дім "Академперіодика" НАН України

Анотація

Розглянуто підстановки, які редукують рівняння utt=a(t)uuxx+b(t)ux²+c(t)u до системи звичайних диференціальних рівнянь. Запропоновано ефективний метод інтегрування редукованих систем. Показано, що їх інтегрування зводиться до інтегрування системи лінійних рівнянь wʺ₁=Φ₁(t)w₁, wʺ₂=Φ₂(t)w₂, де Φ₁(t), Φ₂(t) — довільні наперед задані функції.
Рассмотрены подстановки, редуцирующие уравнение utt=a(t)uuxx+b(t)ux²+c(t)u к системе обыкновенных дифференциальных уравнений. Предложен эффективный метод интегрирования редуцированных систем. Показано, что их интегрирование сводится к интегрированию системы линейных уравнений wʺ₁=Φ₁(t)w₁, wʺ₂=Φ₂(t)w₂, где Φ₁(t), Φ₂(t) — произвольные наперед заданные функции.
Substitutions that reduce the equation utt=a(t)uuxx+b(t)ux²+c(t)u to a system of ordinary differential equations are considered. An efficient method to integrate the corresponding reduced systems is proposed. It is shown that their integration can be reduced to the integration of a system of linear equations wʺ₁=Φ₁(t)w₁, wʺ₂=Φ₂(t)w₂, where Φ₁(t) and Φ₂(t) are arbitrary predefined functions.

Опис

Теми

Математика

Цитування

Побудова точних розв'язків нелінійних рівнянь гіперболічного типу / А.Ф. Баранник, Т.А. Баранник, І.І. Юрик // Доповіді Національної академії наук України. — 2017. — № 7. — С. 3-9. — Бібліогр.: 7 назв. — укр.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced