Класифікація диференціальних рівнянь за симетрійними властивостями (за матеріалами наукового повідомлення на засіданні Президії НАН України 5 липня 2017 р.)
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Видавничий дім "Академперіодика" НАН України
Анотація
У доповіді розглянуто задачу класифікації ліївських симетрій у класах нелінійних диференціальних рівнянь з частинними похідними. Такі симетрії,
зокрема, дозволяють відібрати фізично важливі рівняння з певного класу, а
також побудувати їх точні розв'язки. Для багатьох класів рівнянь, що є
важливими для застосувань, класичні методи групового аналізу не дозволяють отримати вичерпну класифікацію симетрій. Такі задачі потребують
нових підходів, більшість з яких ґрунтуються на використанні невироджених точкових перетворень. На прикладах групової класифікації узагальнених рівнянь Кавахари та квазілінійних рівнянь реакції—дифузії показано
ефективність нещодавно розроблених методів, зокрема відшукання найбільш широких груп еквівалентності та відображень між класами.
The report is devoted to the problem of Lie symmetry classification for classes of nonlinear partial differential equations. Such symmetries allow one, in particular, to select equations of potential physical interest and to construct their exact solutions. For many classes of partial differential equations which are important for applications classical methods of group analysis do not result in exhaustive group classification. Such complicated group classification problems require new tools to be solved completely. Majority of the modern approaches are based on the usage of nondegenerate point transformations. Using the group classifications of variable coefficient generalized Kawahara equations and quasilinear reaction—diffusion equations as illustrative examples, we show the effectiveness of the recently developed approaches. These approaches include, in particular, the construction of the widest possible equivalence groups and the method of mapping between classes.
The report is devoted to the problem of Lie symmetry classification for classes of nonlinear partial differential equations. Such symmetries allow one, in particular, to select equations of potential physical interest and to construct their exact solutions. For many classes of partial differential equations which are important for applications classical methods of group analysis do not result in exhaustive group classification. Such complicated group classification problems require new tools to be solved completely. Majority of the modern approaches are based on the usage of nondegenerate point transformations. Using the group classifications of variable coefficient generalized Kawahara equations and quasilinear reaction—diffusion equations as illustrative examples, we show the effectiveness of the recently developed approaches. These approaches include, in particular, the construction of the widest possible equivalence groups and the method of mapping between classes.
Опис
Теми
Молоді вчені
Цитування
Класифікація диференціальних рівнянь за симетрійними властивостями (за матеріалами наукового повідомлення на засіданні Президії НАН України 5 липня 2017 р.) / О.О. Ванєєва // Вісник Національної академії наук України. — 2017. — № 9. — С. 33-40. — Бібліогр.: 24 назв. — укр.