Discrete breathers in an one-dimensional array of magnetic dots

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України

Анотація

The dynamics of the one-dimensional array of magnetic particles (dots) with the easy-plane anisotropy is investigated. The particles interact with each other via the magnetic dipole interaction and the whole system is governed by the set of Landau–Lifshitz equations. The spatially localized and time-periodic solutions known as discrete breathers (or intrinsic localized modes) are identified. These solutions have no analogue in the continuum limit and consist of the core where the magnetization vectors precess around the hard axis and the tails where the magnetization vectors oscillate around the equilibrium position.

Опис

Теми

К 80-летию уравнения Ландау–Лифшица

Цитування

Discrete breathers in an one-dimensional array of magnetic dots / R.L. Pylypchuk, Y. Zolotaryuk // Физика низких температур. — 2015. — Т. 41, № 9. — С. 942–948 . — Бібліогр.: 46 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced