Анализ и восстановление слабоконтрастных изображений методом нейросетевого синтеза в сравнении с методом линейного предсказания
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут проблем штучного інтелекту МОН України та НАН України
Анотація
Статья демонстрирует сравнительный анализ эффективности восстановления слабоконтрастных изображений, основанный на использовании методов самоорганизующегося нейросетевого синтеза и линейного предсказания. Оба метода позволяют повысить чувствительность и пространственное разрешение визуального анализа низкоконтрастных яркостных (одномерных) и мультиспектральных изображений. Приведены практические примеры со сравнением эффективности для различных технологий (радиология, геоинформационные системы).
Article shows a comparative analysis of the efficiency of the recovery of low-contrast images, based on the use of self-organizing neural network methods of synthesis and linear prediction. Both methods allow to increase the sensitivity and spatial resolution of the visual analysis of low contrast luminance (one-dimensional) and multispectral images. The practical examples for comparing the effectiveness of different technologies (radiology, geographic information systems).
Article shows a comparative analysis of the efficiency of the recovery of low-contrast images, based on the use of self-organizing neural network methods of synthesis and linear prediction. Both methods allow to increase the sensitivity and spatial resolution of the visual analysis of low contrast luminance (one-dimensional) and multispectral images. The practical examples for comparing the effectiveness of different technologies (radiology, geographic information systems).
Опис
Теми
Системи розпізнавання і сприйняття образів
Цитування
Анализ и восстановление слабоконтрастных изображений методом нейросетевого синтеза в сравнении с методом линейного предсказания / А.А. Степаненко // Штучний інтелект. — 2017. — № 1. — С. 66-76. — Бібліогр.: 12 назв. — рос.