Побудова найкращих чебишовських наближень сплайнами
Завантаження...
Файли
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут проблем штучного інтелекту МОН України та НАН України
Анотація
З метою побудови найкращого чебишовського наближення для заданої функції поліноміальним сплайном степеня n з r фіксованими вузлами у статті пропонується застосувати після відповідної модифікації алгоритм апроксимації функції багатьох змінних узагальненим многочленом. У цьому алгоритмі використовується зведення до задачі лінійного програмування з головною двоїстою максимум-задачею. Аналіз чисельних результатів показав, що у більшості випадків модифікований алгоритм знаходить більш точні наближення сплайнами, ніж інші відомі алгоритми.
In order to compute the best Chebyshev (uniform) approximation for a given function by polynomial spline of degree n with r fixed knots it is proposed to apply, after an appropriate modification, an algorithm for approximating many-variables function by a generalized polynomial. In the algorithm a reduction to the linear programming problem with the main dual maximum-problem is used. Analysis of the numerical results showed that in most cases the modified algorithm has computed spline approximations more precisely than other known algorithms.
In order to compute the best Chebyshev (uniform) approximation for a given function by polynomial spline of degree n with r fixed knots it is proposed to apply, after an appropriate modification, an algorithm for approximating many-variables function by a generalized polynomial. In the algorithm a reduction to the linear programming problem with the main dual maximum-problem is used. Analysis of the numerical results showed that in most cases the modified algorithm has computed spline approximations more precisely than other known algorithms.
Опис
Теми
Теорія та засоби обчислювального інтелекту
Цитування
Побудова найкращих чебишовських наближень сплайнами / Л.П. Вакал // Штучний інтелект. — 2017. — № 2. — С. 94-100. — Бібліогр.: 15 назв. — укр.