О движениях в малой окрестности нуля многомерной системы
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Видавничий дім "Академперіодика" НАН України
Анотація
Приведен качественный анализ особых точек многомерных систем. В трехмерных системах (базовые модели), образующих аттракторы, особые точки в нуле могут быть седлоузловыми, либо седлофокусными. В
связке двух осцилляторов (Дуффинга и Ван-дер-Поля) сумма характеристических показателей в особой
точке при синхронизации равна нулю.
Наведено якісний аналіз особливих точок багатовимірних систем. У тривимірних системах (базові моделі), що утворюють атрактори, особливі точки в нулі можуть бути сідловузловими, або сідлофокусними. У зв’язці двох осциляторів (Дуффінга і Ван-дер-Поля) сума характеристичних показників в особливій точці при синхронізації дорівнює нулю.
The qualitative analysis of singular points of multidimensional systems is given. In three-dimensional systems (base models) that form attractors, the special points at zero can be saddle-headed or septofocus. In the bundle of two oscillators (Duffing and Van der Pol), the sum of characteristic indices at a singular point with syn chronization is zero.
Наведено якісний аналіз особливих точок багатовимірних систем. У тривимірних системах (базові моделі), що утворюють атрактори, особливі точки в нулі можуть бути сідловузловими, або сідлофокусними. У зв’язці двох осциляторів (Дуффінга і Ван-дер-Поля) сума характеристичних показників в особливій точці при синхронізації дорівнює нулю.
The qualitative analysis of singular points of multidimensional systems is given. In three-dimensional systems (base models) that form attractors, the special points at zero can be saddle-headed or septofocus. In the bundle of two oscillators (Duffing and Van der Pol), the sum of characteristic indices at a singular point with syn chronization is zero.
Опис
Теми
Механіка
Цитування
О движениях в малой окрестности нуля многомерной системы / Н.В. Никитина // Доповіді Національної академії наук України. — 2018. — № 6. — С. 49-57. — Бібліогр.: 8 назв. — рос.