К геометрическим основам дифференциальной реализации динамических процессов в гильбертовом пространстве
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут кібернетики ім. В.М. Глушкова НАН України
Анотація
В контексте качественной теории реализации бесконечномерных динамических систем приведены результаты исследований геометрических свойств семейств непрерывных управляемых динамических процессов (отображений «вход-выход») в задаче разрешимости дифференциальной реализации этого семейства в классе линейных обыкновенных нестационарных дифференциальных уравнений в сепарабельном гильбертовом пространстве.
У контексті якісної теорії реалізації нескінченновимірних динамічних систем наведено результати досліджень геометричних якостей сім’ї неперервних керованих динамічних процесів (відображень «вхід-вихід») у задачі розв’язності диференціальної реалізації цієї сім’ї у класі лінійних звичайних нестаціонарних диференціальних рівнянь у сепарабельному гільбертовому просторі.
In the context of the qualitative theory of implementation of infinite-dimensional dynamic systems, the authors demonstrate some results related to investigation of the geometrical properties of families of continuous control dynamic processes ( “input–output” mappings) in the problem of solvability of this differential realization in a class of linear ordinary nonstationary differential equations in a separable Hilbert space.
У контексті якісної теорії реалізації нескінченновимірних динамічних систем наведено результати досліджень геометричних якостей сім’ї неперервних керованих динамічних процесів (відображень «вхід-вихід») у задачі розв’язності диференціальної реалізації цієї сім’ї у класі лінійних звичайних нестаціонарних диференціальних рівнянь у сепарабельному гільбертовому просторі.
In the context of the qualitative theory of implementation of infinite-dimensional dynamic systems, the authors demonstrate some results related to investigation of the geometrical properties of families of continuous control dynamic processes ( “input–output” mappings) in the problem of solvability of this differential realization in a class of linear ordinary nonstationary differential equations in a separable Hilbert space.
Опис
Теми
Системний аналіз
Цитування
К геометрическим основам дифференциальной реализации динамических процессов в гильбертовом пространстве / В.А. Русанов, А.В. Данеев, Ю.Э. Линке // Кибернетика и системный анализ. — 2017. — Т. 53, № 4. — С. 71–83. — Бібліогр.: 29 назв. — рос.