Photoplastic Effect in Narrow-Gap Mercury Chalcogenide Crystals
Завантаження...
Файли
Дата
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут металофізики ім. Г.В. Курдюмова НАН України
Анотація
The paper elucidates the peculiarities of photoplasticization effect (PPE) occurring in narrow-gap crystals of mercury chalcogenides illuminated by white light during the process of uniaxial deformation. As found, the irradiation has an influence on the plastic deformation in narrow-gap CdxHg₁₋xTe crystals. Negative photoplasticization effect (NPPE) described here is concerned with reducing of plastic stress fluidity under white-light irradiation during plastic deformation of crystals at a constant rate. As found, in contrary to wide-bandgap crystals of the II–VI groups exhibiting positive PPE, NPPE observed in CdxHg₁₋xTe occurs without internal photoeffect. A model explaining the nature of NPPE relies on a decreasing of positive charge in a native oxide layer at the surface of crystal. Charge decreasing reduces potential barrier for exiting on surface of dislocations generated by near-surface sources during dynamical loading. As a result, the level of fluidity stress in the deformed crystal is reduced.
В работе рассмотрены особенности фотопластического эффекта (ФПЭ), наблюдаемого в узкощелевых (Eg ≈ 0,2 эВ) кристаллах халькогенидов ртути при облучении белым светом в процессе их одноосной деформации. Установлено, что облучение влияет на пластическую деформацию узкощелевых кристаллов твёрдых растворов CdxHg₁₋xTe (х — молярный состав). Исследованный в работе отрицательный фотопластический эффект (ОФПЭ) связан с уменьшением при облучении белым светом напряжения пластического течения в условиях пластической деформации кристалла с постоянной скоростью нагружения. Установлено, что, в отличие от широкозонных кристаллов соединений II–VI групп, проявляющих положительный ФПЭ, в кристаллах узкощелевых твёрдых растворов CdxHg₁₋xTe ОФПЭ наблюдается в отсутствие внутреннего фотоэффекта. Модель, объясняющая природу ОФПЭ, основывается на установленном факте уменьшения при освещении кристалла положительного заряда в оксидном слое приповерхностной области кристалла. Этот процесс понижает потенциальный барьер для выхода на поверхность дислокаций, порождаемых приповерхностными источниками в процессе динамического нагружения. Следствием является уменьшение напряжения пластического течения кристалла.
У роботі розглянуто особливості фотопластичного ефекту (ФПЕ), що виникає у вузькощілинних кристалах (Eg ≈ 0,2 еВ) халькогенідів ртуті, освітлених білим світлом, у процесі їх одновісної деформації. Встановлено, що опромінення впливає на пластичну деформацію вузькощілинних кристалів твердих розчинів CdxHg₁₋xTe (х — молярний склад). Досліджений в роботі від’ємний фотопластичний ефект (ВФПE) пов’язаний зі зменшенням напруги пластичної плинности при опроміненні білим світлом в умовах одновісної пластичної деформації кристалу за постійної швидкости навантаження. Виявлено, що, на відміну від широкозонних кристалів сполук II–VI груп, які виявляють позитивний ФПЕ, в кристалах твердих розчинів CdxHg₁₋xTe ВФПE спостерігається за відсутности внутрішнього фотоефекту. Модель, що пояснює природу ВФПE, ґрунтується на встановленому факті зменшення при освітленні кристалу позитивного заряду в оксидному шарі приповерхневої области кристалу. Зменшення заряду понижує потенціяльний бар’єр для виходу на поверхню дислокацій, що породжуються приповерхневими джерелами в процесі динамічного навантаження. Наслідком є зменшення напруги плинности деформації кристалу.
В работе рассмотрены особенности фотопластического эффекта (ФПЭ), наблюдаемого в узкощелевых (Eg ≈ 0,2 эВ) кристаллах халькогенидов ртути при облучении белым светом в процессе их одноосной деформации. Установлено, что облучение влияет на пластическую деформацию узкощелевых кристаллов твёрдых растворов CdxHg₁₋xTe (х — молярный состав). Исследованный в работе отрицательный фотопластический эффект (ОФПЭ) связан с уменьшением при облучении белым светом напряжения пластического течения в условиях пластической деформации кристалла с постоянной скоростью нагружения. Установлено, что, в отличие от широкозонных кристаллов соединений II–VI групп, проявляющих положительный ФПЭ, в кристаллах узкощелевых твёрдых растворов CdxHg₁₋xTe ОФПЭ наблюдается в отсутствие внутреннего фотоэффекта. Модель, объясняющая природу ОФПЭ, основывается на установленном факте уменьшения при освещении кристалла положительного заряда в оксидном слое приповерхностной области кристалла. Этот процесс понижает потенциальный барьер для выхода на поверхность дислокаций, порождаемых приповерхностными источниками в процессе динамического нагружения. Следствием является уменьшение напряжения пластического течения кристалла.
У роботі розглянуто особливості фотопластичного ефекту (ФПЕ), що виникає у вузькощілинних кристалах (Eg ≈ 0,2 еВ) халькогенідів ртуті, освітлених білим світлом, у процесі їх одновісної деформації. Встановлено, що опромінення впливає на пластичну деформацію вузькощілинних кристалів твердих розчинів CdxHg₁₋xTe (х — молярний склад). Досліджений в роботі від’ємний фотопластичний ефект (ВФПE) пов’язаний зі зменшенням напруги пластичної плинности при опроміненні білим світлом в умовах одновісної пластичної деформації кристалу за постійної швидкости навантаження. Виявлено, що, на відміну від широкозонних кристалів сполук II–VI груп, які виявляють позитивний ФПЕ, в кристалах твердих розчинів CdxHg₁₋xTe ВФПE спостерігається за відсутности внутрішнього фотоефекту. Модель, що пояснює природу ВФПE, ґрунтується на встановленому факті зменшення при освітленні кристалу позитивного заряду в оксидному шарі приповерхневої области кристалу. Зменшення заряду понижує потенціяльний бар’єр для виходу на поверхню дислокацій, що породжуються приповерхневими джерелами в процесі динамічного навантаження. Наслідком є зменшення напруги плинности деформації кристалу.
Опис
Теми
Физика прочности и пластичности
Цитування
Photoplastic Effect in Narrow-Gap Mercury Chalcogenide Crystals / B.P. Koman, O.O. Balitskii, D.S. Leonov // Металлофизика и новейшие технологии. — 2018. — Т. 40, № 4. — С. 529-540. — Бібліогр.: 28 назв. — англ.