Hamiltonian Flows of Curves in G/SO(N) and Vector Soliton Equations of mKdV and Sine-Gordon Type

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

The bi-Hamiltonian structure of the two known vector generalizations of the mKdV hierarchy of soliton equations is derived in a geometrical fashion from flows of non-stretching curves in Riemannian symmetric spaces G/SO(N). These spaces are exhausted by the Lie groups G = SO(N+1),SU(N). The derivation of the bi-Hamiltonian structure uses a parallel frame and connection along the curve, tied to a zero curvature Maurer-Cartan form on G, and this yields the mKdV recursion operators in a geometric vectorial form. The kernel of these recursion operators is shown to yield two hyperbolic vector generalizations of the sine-Gordon equation. The corresponding geometric curve flows in the hierarchies are described in an explicit form, given by wave map equations and mKdV analogs of Schrödinger map equations.

Опис

Теми

Цитування

Hamiltonian Flows of Curves in G/SO(N) and Vector Soliton Equations of mKdV and Sine-Gordon Type / S.C. Anco // Symmetry, Integrability and Geometry: Methods and Applications. — 2006. — Т. 2. — Бібліогр.: 30 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced