Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We present a method to obtain infinitely many examples of pairs (W,D) consisting of a matrix weight W in one variable and a symmetric second-order differential operator D. The method is based on a uniform construction of matrix valued polynomials starting from compact Gelfand pairs (G,K) of rank one and a suitable irreducible K-representation. The heart of the construction is the existence of a suitable base change Ψ₀. We analyze the base change and derive several properties. The most important one is that Ψ₀ satisfies a first-order differential equation which enables us to compute the radial part of the Casimir operator of the group G as soon as we have an explicit expression for Ψ0. The weight W is also determined by Ψ₀. We provide an algorithm to calculate Ψ₀ explicitly. For the pair (USp(2n),USp(2n−2)×USp(2)) we have implemented the algorithm in GAP so that individual pairs (W,D) can be calculated explicitly. Finally we classify the Gelfand pairs (G,K) and the K-representations that yield pairs (W,D) of size 2×2 and we provide explicit expressions for most of these cases.

Опис

Теми

Цитування

Matrix Valued Classical Pairs Related to Compact Gelfand Pairs of Rank One / Maarten van Pruijssen , P. Román // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 40 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced