Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Certain ∗-semigroups are associated with the universal C∗-algebra generated by a partial isometry, which is itself the universal C∗-algebra of a ∗-semigroup. A fundamental role for a ∗-structure on a semigroup is emphasized, and ordered and matricially ordered ∗-semigroups are introduced, along with their universal C∗-algebras. The universal C∗-algebra generated by a partial isometry is isomorphic to a relative Cuntz-Pimsner C∗-algebra of a C∗-correspondence over the C∗-algebra of a matricially ordered ∗-semigroup. One may view the C∗-algebra of a partial isometry as the crossed product algebra associated with a dynamical system defined by a complete order map modelled by a partial isometry acting on a matricially ordered ∗-semigroup.

Опис

Теми

Цитування

Ordered ∗-Semigroups and a C∗-Correspondence for a Partial Isometry / B. Brenken // Symmetry, Integrability and Geometry: Methods and Applications. — 2014. — Т. 10. — Бібліогр.: 20 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced