Eigenvalue Estimates of the spinc Dirac Operator and Harmonic Forms on Kähler-Einstein Manifolds

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We establish a lower bound for the eigenvalues of the Dirac operator defined on a compact Kähler-Einstein manifold of positive scalar curvature and endowed with particular spinc structures. The limiting case is characterized by the existence of Kählerian Killing spinc spinors in a certain subbundle of the spinor bundle. Moreover, we show that the Clifford multiplication between an effective harmonic form and a Kählerian Killing spinc spinor field vanishes. This extends to the spinc case the result of A. Moroianu stating that, on a compact Kähler-Einstein manifold of complex dimension 4ℓ+3 carrying a complex contact structure, the Clifford multiplication between an effective harmonic form and a Kählerian Killing spinor is zero.

Опис

Теми

Цитування

Eigenvalue Estimates of the spinc Dirac Operator and Harmonic Forms on Kähler-Einstein Manifolds / R. Nakad, M. Pilca // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 39 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced