Racah Polynomials and Recoupling Schemes of su(1,1)
Завантаження...
Файли
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
The connection between the recoupling scheme of four copies of su(1,1), the generic superintegrable system on the 3 sphere, and bivariate Racah polynomials is identified. The Racah polynomials are presented as connection coefficients between eigenfunctions separated in different spherical coordinate systems and equivalently as different irreducible decompositions of the tensor product representations. As a consequence of the model, an extension of the quadratic algebra QR(3) is given. It is shown that this algebra closes only with the inclusion of an additional shift operator, beyond the eigenvalue operators for the bivariate Racah polynomials, whose polynomial eigenfunctions are determined. The duality between the variables and the degrees, and hence the bispectrality of the polynomials, is interpreted in terms of expansion coefficients of the separated solutions.
Опис
Теми
Цитування
Racah Polynomials and Recoupling Schemes of su(1,1) / S. Post // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 21 назв. — англ.