A Perturbation of the Dunkl Harmonic Oscillator on the Line
Завантаження...
Дата
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Let Jσ be the Dunkl harmonic oscillator on R (σ>−1/2. For 0<u<1 and ξ>0, it is proved that, if σ>u−1/2, then the operator U=Jσ+ξ|x|⁻²u, with appropriate domain, is essentially self-adjoint in L²(R,|x|²σdx), the Schwartz space S is a core of Ū¹/², and Ū has a discrete spectrum, which is estimated in terms of the spectrum of Ĵσ. A generalization Jσ,τ of Jσ is also considered by taking different parameters σ and τ on even and odd functions. Then extensions of the above result are proved for Jσ,τ, where the perturbation has an additional term involving, either the factor x⁻¹ on odd functions, or the factor x on even functions. Versions of these results on R+ are derived.
Опис
Теми
Цитування
A Perturbation of the Dunkl Harmonic Oscillator on the Line / J.A. Álvarez López, M. Calaza, C. Franco // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 28 назв. — англ.