On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Bi-Hamiltonian structures are of great importance in the theory of integrable Hamiltonian systems. The notion of compatibility of symplectic structures is a key aspect of bi-Hamiltonian systems. Because of this, a few different notions of compatibility have been introduced. In this paper we show that, under some additional assumptions, compatibility in the sense of Magri implies a notion of compatibility due to Fassò and Ratiu, that we dub bi-affine compatibility. We present two proofs of this fact. The first one uses the uniqueness of the connection parallelizing all the Hamiltonian vector fields tangent to the leaves of a Lagrangian foliation. The second proof uses Darboux-Nijenhuis coordinates and symplectic connections.

Опис

Теми

Цитування

On the Relationship between Two Notions of Compatibility for Bi-Hamiltonian Systems / M. Santoprete // Symmetry, Integrability and Geometry: Methods and Applications. — 2015. — Т. 11. — Бібліогр.: 15 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced