On Algebraically Integrable Differential Operators on an Elliptic Curve

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We study differential operators on an elliptic curve of order higher than 2 which are algebraically integrable (i.e., finite gap). We discuss classification of such operators of order 3 with one pole, discovering exotic operators on special elliptic curves defined over Q which do not deform to generic elliptic curves. We also study algebraically integrable operators of higher order with several poles and with symmetries, and (conjecturally) relate them to crystallographic elliptic Calogero-Moser systems (which is a generalization of the results of Airault, McKean, and Moser).

Опис

Теми

Цитування

On Algebraically Integrable Differential Operators on an Elliptic Curve / P. Etingof, E. Rains // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 19 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced