From slq(2) to a Parabosonic Hopf Algebra

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

A Hopf algebra with four generators among which an involution (reflection) operator, is introduced. The defining relations involve commutators and anticommutators. The discrete series representations are developed. Designated by sl₋₁(2), this algebra encompasses the Lie superalgebra osp(1|2). It is obtained as a q=−1 limit of the slq(2) algebra and seen to be equivalent to the parabosonic oscillator algebra in irreducible representations. It possesses a noncocommutative coproduct. The Clebsch-Gordan coefficients (CGC) of sl₋₁(2) are obtained and expressed in terms of the dual −1 Hahn polynomials. A generating function for the CGC is derived using a Bargmann realization.

Опис

Теми

Цитування

From slq(2) to a Parabosonic Hopf Algebra / S. Tsujimoto, L. Vinet, A. Zhedanov // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 24 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced