On the Projective Algebra of Randers Metrics of Constant Flag Curvature

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

The collection of all projective vector fields on a Finsler space (M,F) is a finite-dimensional Lie algebra with respect to the usual Lie bracket, called the projective algebra denoted by p(M,F) and is the Lie algebra of the projective group P(M,F). The projective algebra p(M,F=α+β) of a Randers space is characterized as a certain Lie subalgebra of the projective algebra p(M,α). Certain subgroups of the projective group P(M,F) and their invariants are studied. The projective algebra of Randers metrics of constant flag curvature is studied and it is proved that the dimension of the projective algebra of Randers metrics constant flag curvature on a compact n-manifold either equals n(n+2) or at most is n(n+1)/2.

Опис

Теми

Цитування

On the Projective Algebra of Randers Metrics of Constant Flag Curvature / M. Rafie-Rad, B. Rezaei // Symmetry, Integrability and Geometry: Methods and Applications. — 2011. — Т. 7. — Бібліогр.: 28 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced