Random Matrices with Merging Singularities and the Painlevé V Equation
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
We study the asymptotic behavior of the partition function and the correlation kernel in random matrix ensembles of the form 1Zn∣∣det(M²−tI)∣∣αe−nTrV(M)dM, where M is an n×n Hermitian matrix, α>−1/2 and t∈R, in double scaling limits where n→∞ and simultaneously t→0. If t is proportional to 1/n², a transition takes place which can be described in terms of a family of solutions to the Painlevé V equation. These Painlevé solutions are in general transcendental functions, but for certain values of α, they are algebraic, which leads to explicit asymptotics of the partition function and the correlation kernel.
Опис
Теми
Цитування
Random Matrices with Merging Singularities and the Painlevé V Equation / T. Claeys, B. Fahs // Symmetry, Integrability and Geometry: Methods and Applications. — 2016. — Т. 12. — Бібліогр.: 33 назв. — англ.