Singular Eigenfunctions of Calogero-Sutherland Type Systems and How to Transform Them into Regular Ones
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
There exists a large class of quantum many-body systems of Calogero-Sutherland type where all particles can have different masses and coupling constants and which nevertheless are such that one can construct a complete (in a certain sense) set of exact eigenfunctions and corresponding eigenvalues, explicitly. Of course there is a catch to this result: if one insists on these eigenfunctions to be square integrable then the corresponding Hamiltonian is necessarily non-hermitean (and thus provides an example of an exactly solvable PT-symmetric quantum-many body system), and if one insists on the Hamiltonian to be hermitean then the eigenfunctions are singular and thus not acceptable as quantum mechanical eigenfunctions. The standard Calogero-Sutherland Hamiltonian is special due to the existence of an integral operator which allows to transform these singular eigenfunctions into regular ones.
Опис
Теми
Цитування
Singular Eigenfunctions of Calogero-Sutherland Type Systems and How to Transform Them into Regular Ones / E. Langmann // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 26 назв. — англ.