Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We use a Grassmannian framework to define multi-component tau functions as expectation values of certain multi-component Fermi operators satisfying simple bilinear commutation relations on Clifford algebra. The tau functions contain both positive and negative flows and are shown to satisfy the 2n-component KP hierarchy. The hierarchy equations can be formulated in terms of pseudo-differential equations for n × n matrix wave functions derived in terms of tau functions. These equations are cast in form of Sato-Wilson relations. A reduction process leads to the AKNS, two-component Camassa-Holm and Cecotti-Vafa models and the formalism provides simple formulas for their solutions.

Опис

Теми

Цитування

Clifford Algebra Derivations of Tau-Functions for Two-Dimensional Integrable Models with Positive and Negative Flows / H. Aratyn, J. van de Leur // Symmetry, Integrability and Geometry: Methods and Applications. — 2007. — Т. 3. — Бібліогр.: 15 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced