On a Lie Algebraic Characterization of Vector Bundles

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

We prove that a vector bundle π: E→M is characterized by the Lie algebra generated by all differential operators on E which are eigenvectors of the Lie derivative in the direction of the Euler vector field. Our result is of Pursell-Shanks type but it is remarkable in the sense that it is the whole fibration that is characterized here. The proof relies on a theorem of [Lecomte P., J. Math. Pures Appl. (9) 60 (1981), 229-239] and inherits the same hypotheses. In particular, our characterization holds only for vector bundles of rank greater than 1.

Опис

Теми

Цитування

On a Lie Algebraic Characterization of Vector Bundles / P. B.A. Lecomte, T. Leuther, E.Z. Mushengezi // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 8 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced