Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

A class of nonlinear Schrödinger equations involving a triad of power law terms together with a de Broglie-Bohm potential is shown to admit symmetry reduction to a hybrid Ermakov-Painlevé II equation which is linked, in turn, to the integrable Painlevé XXXIV equation. A nonlinear Schrödinger encapsulation of a Korteweg-type capillary system is thereby used in the isolation of such a Ermakov-Painlevé II reduction valid for a multi-parameter class of free energy functions. Iterated application of a Bäcklund transformation then allows the construction of novel classes of exact solutions of the nonlinear capillarity system in terms of Yablonskii-Vorob'ev polynomials or classical Airy functions. A Painlevé XXXIV equation is derived for the density in the capillarity system and seen to correspond to the symmetry reduction of its Bernoulli integral of motion.

Опис

Теми

Цитування

Ermakov-Painlevé II Symmetry Reduction of a Korteweg Capillarity System / C. Rogers, P.A. Clarkson // Symmetry, Integrability and Geometry: Methods and Applications. — 2017. — Т. 13. — Бібліогр.: 92 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced