Construction of a Lax Pair for the E₆⁽¹⁾ q-Painlevé System
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
We construct a Lax pair for the E₆⁽¹⁾ q-Painlevé system from first principles by employing the general theory of semi-classical orthogonal polynomial systems characterised by divided-difference operators on discrete, quadratic lattices [arXiv:1204.2328]. Our study treats one special case of such lattices - the q-linear lattice - through a natural generalisation of the big q-Jacobi weight. As a by-product of our construction we derive the coupled first-order q-difference equations for the E₆⁽¹⁾ q-Painlevé system, thus verifying our identification. Finally we establish the correspondences of our result with the Lax pairs given earlier and separately by Sakai and Yamada, through explicit transformations.
Опис
Теми
Цитування
Construction of a Lax Pair for the E₆⁽¹⁾ q-Painlevé System / N.S. Witte, C.M. Ormerod // Symmetry, Integrability and Geometry: Methods and Applications. — 2012. — Т. 8. — Бібліогр.: 18 назв. — англ.