Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

A Cayley graph X = Cay(G, S) is called normal for G if the right regular representation R(G) of G is normal in the full automorphism group Aut(X) of X. In the present paper it is proved that all connected tetravalent Cayley graphs on a minimal non-abelian group G are normal when (|G|,2) = (|G|,3) = 1, and X is not isomorphic to either Cay(G, S), where |G| = 5n, and |Aut(X)| = 2m.3.5n, where m ∈ {2,3} and n ≥ 3, or Cay(G, S) where |G| = 5qn (q is prime) and |Aut(X)| = 2m.3.5.qn, where q ≥ 7, m ∈ {2,3} and n ≥ 1.

Опис

Теми

Цитування

Automorphism groups of tetravalent Cayley graphs on minimal non-abelian groups / M. Ghasemi // Algebra and Discrete Mathematics. — 2012. — Vol. 13, № 1. — С. 52–58. — Бібліогр.: 14 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced