Prethick subsets in partitions of groups

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

A subset S of a group G is called thick if, for any finite subset F of G, there exists g ∈ G such that Fg ⊆ S, and k-prethick, k ∈ N if there exists a subset K of G such that |K| = k and KS is thick. For every finite partition P of G, at least one cell of P is k-prethick for some k ∈ N. We show that if an infinite group G is either Abelian, or countable locally finite, or countable residually finite then, for each k ∈ N, G can be partitioned in two not k-prethick subsets.

Опис

Теми

Цитування

Prethick subsets in partitions of groups / I.V. Protasov, S. Slobodianiuk // Algebra and Discrete Mathematics. — 2012. — Vol. 14, № 2. — С. 267–275. — Бібліогр.: 18 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced