Connectivity and planarity of power graphs of finite cyclic, dihedral and dicyclic groups

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

The power graph of a finite group is the graph whose vertices are the elements of the group and two distinct vertices are adjacent if and only if one is an integral power of the other. In this paper we discuss the planarity and vertex connectivity of the power graphs of finite cyclic, dihedral and dicyclic groups. Also we apply connectivity concept to prove that the power graphs of both dihedral and dicyclic groups are not Hamiltonian.

Опис

Теми

Цитування

Connectivity and planarity of power graphs of finite cyclic, dihedral and dicyclic groups / S. Chattopadhyay, P. Panigrahi // Algebra and Discrete Mathematics. — 2014. — Vol. 18, № 1. — С. 42–49. — Бібліогр.: 8 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced