Факторизация линейных групп и групп, обладающих нормальной системой с линейными факторами
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Исследуются (в основном факторизационные) свойства групп, указанных в названии статьи. Например, установлено, что периодическая линейная группа обладает разрешимой подгруппой конечного индекса тогда и только тогда, когда она может быть представлена в виде произведения двух подгрупп, каждая из которых имеет локально нильпотентную подгруппу конечного индекса. Доказано также, что периодическая линейная группа (или даже фактор-группа такой группы) содержит разрешимую подгруппу конечного индекса, если она разложима в произведение конечного числа попарно перестановочных подгрупп, каждая из которых имеет локально нильпотентную подгруппу конечного индекса. Далее, доказано, что не более чем счетная локально конечная группа локально разрешима тогда и только тогда, когда она обладает нормальной системой с линейными факторами и при этом может быть представлена в виде произведения некоторых локально нильпотентных подгрупп, попарно перестановочных и попарно не имеющих элементов одинаковых не роавных 1 порядков.
Опис
Теми
Статті
Цитування
Факторизация линейных групп и групп, обладающих нормальной системой с линейными факторами / Н.С. Черников // Український математичний журнал. — 1988. — Т. 40, № 3. — С. 362–369. — Бібліогр.: 15 назв. — рос.