Jamming and percolation of parallel squares in single-cluster growth model

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут фізики конденсованих систем НАН України

Анотація

This work studies the jamming and percolation of parallel squares in a single-cluster growth model. The Leath-Alexandrowicz method was used to grow a cluster from an active seed site. The sites of a square lattice were occupied by addition of the equal size k x k squares (E-problem) or a mixture of k x k and m x m (m ≤ k) squares (M-problem). The larger k x k squares were assumed to be active (conductive) and the smaller m x m squares were assumed to be blocked (non-conductive). For equal size k x k squares (E-problem) the value of pj = 0.638 ± 0.001 was obtained for the jamming concentration in the limit of k →∞. This value was noticeably larger than that previously reported for a random sequential adsorption model, pj = 0.564 ± 0.002. It was observed that the value of percolation threshold pc (i.e., the ratio of the area of active k x k squares and the total area of k x k squares in the percolation point) increased with an increase of k. For mixture of k x k and m x m squares (M-problem), the value of pc noticeably increased with an increase of k at a fixed value of m and approached 1 at k ≥ 10 m. This reflects that percolation of larger active squares in M-problem can be effectively suppressed in the presence of smaller blocked squares.
В роботi вивчено явища джамiнгу i перколяцiї паралельних квадратiв для однокластерної моделi росту. Для росту кластеру з активного зародку використовувався метод Лiса-Александровича. Вузли квадратної ґратки займалися додаванням однакових k ×k квадратiв (E-задача) або сумiшi k ×k i m ×m (m É k) квадратiв (M-задача). Припускалося, що бiльшi k × k областi були активними (провiдними), а меншi були заблокованими (непровiдними). Для k ×k квадратiв однакового розмiру (E-задача) за умови k → ∞ було отримано таке значення концентрацiї джамiнгу p j = 0.638±0.001 . Це значення було iстотно меншим за отримане ранiше для моделi випадкової послiдовної адсорбцiї: p j = 0.564±0.002. Було показано, що величина перколяцiйного порогу pc (тобто вiдношення площi активних k ×k квадратiв до загальної площi осаджених k × k квадратiв в перколяцiйнiй точцi) зростала при збiльшеннi k. Для сумiшi k × k i m × m квадратiв (M-задача) величина pc сильно зростала при збiльшеннi k при фiксованому значеннi m та наближалась до 1 приk Ê 10m. Це пов’язано з тим, що перколяцiя бiльших активних квадратiв для M-задачi може ефективно пригнiчуватися за наявностi невеликої кiлькостi малих заблокованих квадратiв.

Опис

Теми

Цитування

Jamming and percolation of parallel squares in single-cluster growth model / I.A. Kriuchevskyi, L.A. Bulavin, Yu.Yu. Tarasevich, N.I. Lebovka // Condensed Matter Physics. — 2014. — Т. 17, № 3. — С. 33006:1-11. — Бібліогр.: 42 назв.— англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced