On one-sided interval edge colorings of biregular bipartite graphs

Завантаження...
Ескіз

Дата

Автори

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут прикладної математики і механіки НАН України

Анотація

A proper edge t-coloring of a graph G is a coloring of edges of G with colors 1,2,…,t such that all colors are used, and no two adjacent edges receive the same color. The set of colors of edges incident with a vertex x is called a spectrum of x. Any nonempty subset of consecutive integers is called an interval. A proper edge t-coloring of a graph G is interval in the vertex x if the spectrum of x is an interval. A proper edge t-coloring φ of a graph G is interval on a subset R0 of vertices of G, if for any x∈R0, φ is interval in x. A subset R of vertices of G has an i-property if there is a proper edge t-coloring of G which is interval on R. If G is a graph, and a subset R of its vertices has an i-property, then the minimum value of t for which there is a proper edge t-coloring of G interval on R is denoted by wR(G). We estimate the value of this parameter for biregular bipartite graphs in the case when R is one of the sides of a bipartition of the graph

Опис

Теми

Цитування

On one-sided interval edge colorings of biregular bipartite graphs / R.R. Kamalian // Algebra and Discrete Mathematics. — 2015. — Vol. 19, № 2. — С. 193-199. — Бібліогр.: 29 назв. — англ.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced