Неравенство Като для операторов с бесконечным числом разделяющихся переменных

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Розглянуто умови збереження нерівності Като у випадку, коли замість оператора з скінченним числом змінних розглядається оператор з нескінченним числом відокремлюваних змінних. Отримана нерівність використовується для вивчення самоспряженості збуреного оператора з нескінченним числом відокремлюваних змінних та області визначення форм-суми вказаного оператора і сингулярного потенціалу.
We find conditions under which the Kato inequality is preserved in the case where, instead of an operator with finitely many variables, an operator with infinitely many separated variables is taken. We use the inequality obtained to study both self-adjointness of the perturbed operator with infinitely many separated variables and the domain of definition of the form-sum of this operator and a singular potential.

Опис

Теми

Статті

Цитування

Неравенство Като для операторов с бесконечным числом разделяющихся переменных / В.Г. Самойленко // Український математичний журнал. — 1999. — Т. 51, № 5. — С. 718–720. — Бібліогр.: 5 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced