Краевые задачи для стационарных уравнений Гамильтона—Якоби и Беллмана

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Внодяться розв'язки граничних задач для стаціонарних рівнянь Гамільтона-Якобі та Беллмапа и функціональних просторах (семімодулях) зі спеціальною алгебраїчною структурою, яка відповідає цим задачам. В означених просторах одержані представлення розв'язків через „базисні", а також теорема про їх апроксимацію при апроксимації негладких гамільтоніанів гладкими. Підхід являє собою альтернативу принципу максимума.
We introduce solutions of boundary-value problems for the stationary Hamilton-Jacobi and Bellman equations in functional spaces (semimodules) with a special algebraic structure adapted to these problems. In these spaces, we obtain representations of solutions in terms of “basic” ones and prove a theorem on approximation of these solutions in the case where nonsmooth Hamiltonians are approximated by smooth Hamiltonians. This approach is an alternative to the maximum principle.

Опис

Теми

Статті

Цитування

Краевые задачи для стационарных уравнений Гамильтона—Якоби и Беллмана / В.П. Маслов, С.Н. Самборский // Український математичний журнал. — 1997. — Т. 49, № 3. — С. 433–447. — Бібліогр.: 5 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced