Вироджені орбіти приєднаного представлення ортогональних та унітарних груп як алгебраїчні підмноговиди
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Описано деякі типи вироджених орбіт ортогональних та унітарних груп у відповідній алгебрі Лі як поверхні рівня спеціального набору поліиоміальних функцій. Даний метод дозволяє описати орбіту типу SO(2n)/SO(2k)×SO(2) n−k , SO(2n+1)/SO(2k+1)×SO(2) n−k , and (S)U(n)/(S)(U(2k)×U(2) n−k ) in so(2n), so(2n+1), and (s)u(n), відповідно. Крім того, показано, що орбіти мінімальних розмірностей даних груп можуть бути описані у відповідній алгебрі як перетин квадрик. Зокрема, таким чином описується орбіта CPⁿ⁻¹ ⊂ u(n).
We suggest a method for describing some types of degenerate orbits of orthogonal and unitary groups in the corresponding Lie algebras as level surfaces of a special collection of polynomial functions. This method allows one to describe orbits of the types SO(2n)/SO(2k)×SO(2) n−k , SO(2n+1)/SO(2k+1)×SO(2) n−k , and (S)U(n)/(S)(U(2k)×U(2) n−k ) in so(2n), so(2n+1), and (s)u(n), respectively. In addition, we show that the orbits of minimal dimensions of the groups under consideration can be described in the corresponding algebras as intersections of quadries. In particular, this approach is used for describing the orbit CPⁿ⁻¹ ⊂ u(n).
We suggest a method for describing some types of degenerate orbits of orthogonal and unitary groups in the corresponding Lie algebras as level surfaces of a special collection of polynomial functions. This method allows one to describe orbits of the types SO(2n)/SO(2k)×SO(2) n−k , SO(2n+1)/SO(2k+1)×SO(2) n−k , and (S)U(n)/(S)(U(2k)×U(2) n−k ) in so(2n), so(2n+1), and (s)u(n), respectively. In addition, we show that the orbits of minimal dimensions of the groups under consideration can be described in the corresponding algebras as intersections of quadries. In particular, this approach is used for describing the orbit CPⁿ⁻¹ ⊂ u(n).
Опис
Теми
Статті
Цитування
Вироджені орбіти приєднаного представлення ортогональних та унітарних груп як алгебраїчні підмноговиди / О.М. Боярський, Т.В. Скрипник // Український математичний журнал. — 1997. — Т. 49, № 7. — С. 895–905. — Бібліогр.: 7 назв. — укр.