Измеримые функционалы и финитно абсолютно непрерывные меры на банаховых пространствах

Завантаження...
Ескіз

Дата

Назва журналу

Номер ISSN

Назва тому

Видавець

Інститут математики НАН України

Анотація

Розглядається структура ортогональних многочленів у просторі L₂(B,μ) для ймовірнісної міри μ на банаховому просторі B. Ці поліноми описано в термінах ядер Гільберта-Шмідта на просторі квадратично інтегровних лінійних функціоналів. Вивчаються властивості таких функціоналів. Деякі ймовірнісні міри розглядаються як узагальнені функціонали на просторі B,μ.
We consider the structure of orthogonal polynomials in the space L₂(B, μ) for a probability measure μ on a Banach space B. These polynomials are described in terms of Hilbert–Schmidt kernels on the space of square-integrable linear functionals. We study the properties of functionals of this sort. Certain probability measures are regarded as generalized functionals on the space (B, μ).

Опис

Теми

Статті

Цитування

Измеримые функционалы и финитно абсолютно непрерывные меры на банаховых пространствах / А.А. Дороговцев // Український математичний журнал. — 2000. — Т. 52, № 9. — С. 1194–1204. — Бібліогр.: 7 назв. — рос.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced