Необходимое условие регулярности граничной точки для вырождающихся параболических уравнений с измеримыми коэффициентами
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Доведено необхідну умову регулярності точки на циліндричній границі для розв'язків квазілінійних параболічних рівнянь другого порядку дивергентної форми, коефіцієнти яких мають надлінійний ріст відносно похідних за просторовими змінними. Ця умова збігається з достатньою умовою, доведеною раніше автором. Тим самим отримано критерій регулярності граничної точки, аналогічний відомому критерію Вінера для рівняння Лапласа.
We prove a necessary condition for the regularity of a point on a cylindrical boundary for solutions of second-order quasilinear parabolic equations of divergent form whose coefficients have a superlinear growth relative to derivatives with respect to space variables. This condition coincides with the sufficient condition proved earlier by the author. Thus, we establish a criterion for the regularity of a boundary point similar to the well-known Wiener criterion for the Laplace equation.
We prove a necessary condition for the regularity of a point on a cylindrical boundary for solutions of second-order quasilinear parabolic equations of divergent form whose coefficients have a superlinear growth relative to derivatives with respect to space variables. This condition coincides with the sufficient condition proved earlier by the author. Thus, we establish a criterion for the regularity of a boundary point similar to the well-known Wiener criterion for the Laplace equation.
Опис
Теми
Статті
Цитування
Необходимое условие регулярности граничной точки для вырождающихся параболических уравнений с измеримыми коэффициентами / И.И. Скрыпник // Український математичний журнал. — 2004. — Т. 56, № 6. — С. 818–836. — Бібліогр.: 6 назв. — рос.