Задача Неймана и одна задача с косой производной для неправильно эллиптического уравнения
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Розглядається проблема розв’язностi неоднорiдної задачi Неймана i один випадок задачi зi скiсною похiдною в обмеженiй областi для скалярного неправильно елiптичного диференцiального рiвняння з комплексними коефiцiєнтами. Дослiджено модельний випадок, коли за область вибрано одиничний круг, а рiвняння не має молодших членiв. Доведено, що класами граничних даних, для яких задачi мають єдиний розв’язок у просторi Соболєва, є простори функцiй з експоненцiальним спаданням коефiцiєнтiв Фур’є.
We study the problem of solvability of an inhomogeneous Neumann problem and an oblique-derivative problem for an improperly elliptic scalar differential equation with complex coefficients in a bounded domain. A model case in which the domain is a unit disk and the equation does not contain lower-order terms is investigated. It is shown that the classes of boundary data for which these problems are uniquely solvable in a Sobolev space are formed by the spaces of functions with exponentially decreasing Fourier coefficients.
We study the problem of solvability of an inhomogeneous Neumann problem and an oblique-derivative problem for an improperly elliptic scalar differential equation with complex coefficients in a bounded domain. A model case in which the domain is a unit disk and the equation does not contain lower-order terms is investigated. It is shown that the classes of boundary data for which these problems are uniquely solvable in a Sobolev space are formed by the spaces of functions with exponentially decreasing Fourier coefficients.
Опис
Теми
Статті
Цитування
Задача Неймана и одна задача с косой производной для неправильно эллиптического уравнения / В.П. Бурский, Е.В. Лесина // Український математичний журнал. — 2012. — Т. 64, № 4. — С. 451-462. — Бібліогр.: 15 назв. — рос.