О равномерных приближениях почти периодических функций целыми функциями конечной степени
Завантаження...
Файли
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Наводиться доведення відомого твердження С. И. Бернштейна про те, що серед цілих функцій степеня ≤σ, які на (−∞,∞) найкраще рівномірно наближають (з порядком σ) періодичну функцію, існує тригонометричний поліном степеня ≤σ. Доведено аналог цього твердження С. И. Бернштейна та теорему Джексона для рівномірних майже періодичних функцій з довільним спектром.
We give a new proof of the well-known Bernshtein statement that, among entire functions of degree ≤σ which realize the best uniform approximation (of degree σ) of a periodic function on (−∞,∞), there is a trigonometric polynomial of degree ≤σ. We prove an analog of the mentioned Bernshtein statement and the Jackson theorem for uniform almost periodic functions with arbitrary spectrum.
We give a new proof of the well-known Bernshtein statement that, among entire functions of degree ≤σ which realize the best uniform approximation (of degree σ) of a periodic function on (−∞,∞), there is a trigonometric polynomial of degree ≤σ. We prove an analog of the mentioned Bernshtein statement and the Jackson theorem for uniform almost periodic functions with arbitrary spectrum.
Опис
Теми
Статті
Цитування
О равномерных приближениях почти периодических функций целыми функциями конечной степени / М.Ф. Тиман // Український математичний журнал. — 1995. — Т. 47, № 9. — С. 1274–1279. — Бібліогр.: 4 назв. — рос.