О точных константах в неравенствах для норм производных на конечном отрезке
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Доведено, що в адитивній нерівності для норм проміжних похідних функцій, які визначені на скінченному відрізку і дорівнюють нулю у заданій системі точок, найменше можливе значення константи при нормі функції співпадає з точною константою у відповідній нерівності типу Маркова - Нікольського для алгебраїчних поліномів, які теж дорівнюють нулю у цій системі точок.
We prove that, in an additive inequality for norms of intermediate derivatives of functions defined on a finite segment and equal to zero at a given system of points, the least possible value of a constant coefficient of the norm of a function coincides with the exact constant in the corresponding Markov-Nikol'skii inequality for algebraic polynomials that are also equal to zero at this system of points.
We prove that, in an additive inequality for norms of intermediate derivatives of functions defined on a finite segment and equal to zero at a given system of points, the least possible value of a constant coefficient of the norm of a function coincides with the exact constant in the corresponding Markov-Nikol'skii inequality for algebraic polynomials that are also equal to zero at this system of points.
Опис
Теми
Короткі повідомлення
Цитування
О точных константах в неравенствах для норм производных на конечном отрезке / В.Ф. Бабенко, Ж.Б. Удраого // Український математичний журнал. — 1999. — Т. 51, № 1. — С. 117–119. — Бібліогр.: 4 назв. — рос.