Quasi-Frobenius Rings and Nakayama Permutations of Semiperfect Rings
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
We say that A is a ring with duality for simple modules, or simply a DSM-ring, if, for every simple right (left) A-module U, the dual module U* is a simple left (right) A-module. We prove that a semiperfect ring is a DSM-ring if and only if it admits a Nakayama permutation. We introduce the notion of a monomial ideal of a semiperfect ring and study the structure of hereditary semiperfect rings with monomial ideals. We consider perfect rings with monomial socles.
Кільце A називається кільцем з дуальністю для простих модулів, або DSM-кільцем, якщо модуль U, дуальний до будь-якого простого правого (лівого) A-модуля U∗, с простим лівим (правим) A-модулем. Встановлено, що напівдосконале кільце є DSM-кільцем тоді і тільки тоді, коли воно допускає підстановку Накаями. Введено поняті я мопоміального ідеалу напівдоско-малого кільця та вивчено будову спадкових напівдосконалих кілець із такими ідеалами. Розглянуто досконалі кільця з мопоміальнимн цоколями.
Кільце A називається кільцем з дуальністю для простих модулів, або DSM-кільцем, якщо модуль U, дуальний до будь-якого простого правого (лівого) A-модуля U∗, с простим лівим (правим) A-модулем. Встановлено, що напівдосконале кільце є DSM-кільцем тоді і тільки тоді, коли воно допускає підстановку Накаями. Введено поняті я мопоміального ідеалу напівдоско-малого кільця та вивчено будову спадкових напівдосконалих кілець із такими ідеалами. Розглянуто досконалі кільця з мопоміальнимн цоколями.
Опис
Теми
Статті
Цитування
Quasi-Frobenius Rings and Nakayama Permutations of Semiperfect Rings / M.A. Dokuchaev, V.V. Kirichenko // Український математичний журнал. — 2002. — Т. 54, № 7. — С. 919–930. — Бібліогр.: 20 назв. — англ.