Розмірність Лебеґа — Чеха та берівська класифікація векторнозначних нарізно неперервних відображень
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Доведено, що для метризовного простору X зі скінченною розмірністю Лебеґа-Чеха, топологічного простору Y і топологічного векторного простору Z кожне відображення f:X×Y→Z, яке неперервне відносно першої змінної і належить до берівського класу α відносно другої змінної, коли значення першої змінної перебігають скрізь щільну в X множину, належить до (α + 1)-го класу Бера.
For a metrizable space X with finite Lebesgue–Cech dimensionality, a topological space Y, and a topological vector space Z, we consider mappings f: X × Y → Z continuous in the first variable and belonging to the Baire class α in the second variable for all values of the first variable from a certain set everywhere dense in X. We prove that every mapping of this type belongs to the Baire class α + 1.
For a metrizable space X with finite Lebesgue–Cech dimensionality, a topological space Y, and a topological vector space Z, we consider mappings f: X × Y → Z continuous in the first variable and belonging to the Baire class α in the second variable for all values of the first variable from a certain set everywhere dense in X. We prove that every mapping of this type belongs to the Baire class α + 1.
Опис
Теми
Короткі повідомлення
Цитування
Розмірність Лебеґа — Чеха та берівська класифікація векторнозначних нарізно неперервних відображень / А.К. Каланча, В.К. Маслюченко // Український математичний журнал. — 2003. — Т. 55, № 11. — С. 1576–1579. — Бібліогр.: 5 назв. — укр.