Коли сума самоспряжених операторів із заданими цілочисельними спектрами є скалярним оператором
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут математики НАН України
Анотація
Описано множество ∑M1 ,...,Mn и параметров γ, для которых существует разложение оператора γIH в сумму n самосопряженных операторов со спектрами из множеств M1 ,...,Mn , для Mi = {0,1, ...,ki } в случае n ≥ 4 и некоторые случаи при n = 3.
We describe the set ΣM1,…,Mn of parameters γ for which there exists a decomposition of the operator γI H in a sum of n self-adjoint operators with spectra from the sets M 1, …, M n, M i = 0, 1, …, k i, for n ≥ 4 and, in some cases, for n = 3.
We describe the set ΣM1,…,Mn of parameters γ for which there exists a decomposition of the operator γI H in a sum of n self-adjoint operators with spectra from the sets M 1, …, M n, M i = 0, 1, …, k i, for n ≥ 4 and, in some cases, for n = 3.
Опис
Теми
Статті
Цитування
Коли сума самоспряжених операторів із заданими цілочисельними спектрами є скалярним оператором / Р.В. Грушевой // Український математичний журнал. — 2008. — Т. 60, № 4. — С. 470–477. — Бібліогр.: 9 назв. — укр.