Наилучшие приближения периодических функций в обобщенных пространствах Лебега
Завантаження...
Дата
Автори
Назва журналу
Номер ISSN
Назва тому
Видавець
Український математичний журнал
Анотація
В узагальнених просторах Лебега зi змiнним показником знайдено порядки найкращих наближень на класах (ψ,β)- диференцiйовних 2π-перiодичних функцiй, отримано аналог вiдомої нерiвностi Бернштейна для (ψ,β)-похiдної, за допомогою якого доведено оберненi теореми теорiї наближення функцiй на зазначених класах.
In generalized Lebesgue spaces with variable exponent, we determine the orders of the best approximations in the classes of (ψ; β)-differentiable 2π-periodic functions, deduce an analog of the well-known Bernstein inequality for the (ψ; β)-derivative, and apply this inequality to prove the inverse theorems of approximation theory in these classes.
In generalized Lebesgue spaces with variable exponent, we determine the orders of the best approximations in the classes of (ψ; β)-differentiable 2π-periodic functions, deduce an analog of the well-known Bernstein inequality for the (ψ; β)-derivative, and apply this inequality to prove the inverse theorems of approximation theory in these classes.
Опис
Теми
Статті
Цитування
Наилучшие приближения периодических функций в обобщенных пространствах Лебега / С.О. Чайченко // Український математичний журнал. — 2012. — Т. 64, № 9. — С. 1249-1265. — Бібліогр.: 24 назв. — рос.